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Abstract 19	

In this study, the concentrations of 12 metals: Ca, Na, Sr, Mg, Ba, Mn, Cu, Pb, V, Y, U and 20	

Cd in shells of bivalve molluscs (aragonitic: Cerastoderma glaucum, Mya arenaria and 21	

Limecola balthica and bimineralic: Mytilus trossulus) and arthropods (calcitic: Amphibalanus 22	

improvisus) were obtained. The main goal was to determine the incorporation patterns of 23	

shells built with different calcium carbonate polymorphs. The role of potential biological 24	

control on the shell chemistry was assessed by comparing the concentrations of trace elements 25	

between younger and older individuals (different size classes). The potential impact of 26	

environmental factors on the observed elemental concentrations in the studied shells is 27	

discussed. Specimens were collected from brackish waters of the Baltic Sea (the Gulf of 28	

Gdansk). For every species, 40 individuals (ten in each size class) were selected. Pre-cleaned 29	

shells were analysed by ICP-OES and ICP-MS to determine the concentrations of metals. 30	

The distributions of elements both differ between species and exhibit high 31	

intraspecific variability. Calcitic shells preferentially incorporated Mg > Sr > Na, aragonitic 32	

shells incorporated Na > Sr > Mg, and bimineralic shells accumulated Na approximately two 33	
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times more intensively, than Mg and Sr which remained at similar levels. Among all species, 34	

the calcitic shells of A. improvisus most effectively concentrated the majority of the studied 35	

elements, especially Mg > Mn > Ba, which was contrary to the shells of aragonitic molluscs 36	

that contained the lowest levels of trace elements. The size-dependent distributions of 37	

elements in shells did not exhibit a consistent pattern. The highest significant differences were 38	

found for the bimineralic shells of M. trossulus, while the smallest were found for aragonitic 39	

shells; if any variability occurred, it was observed in heavy metals (Pb, Cd).  40	

Our results indicate that elemental variability, especially that of Mg and Sr, is 41	

dominated by the properties of the crystal lattice. The inconsistent variability of trace element 42	

concentrations between species and within single populations supports the important role of 43	

species-specific biological control of the biomineralization process and indicates that 44	

environmental factors have a significant influence on the incorporation of trace elements into 45	

the shells. 46	

 47	
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  49	

1. Introduction 50	

Marine invertebrates such as molluscs (bivalves, gastropods), brachiopods, corals, 51	

echinoderms, bryozoans and some groups of protozoa (foraminifera) are able to precipitate 52	

shells and skeletons as composite materials consisting of calcium carbonate (CaCO3) 53	

crystallised on a species-specific organic matrix (Cusack and Freer, 2008). In a living 54	

organism, CaCO3 is deposited mainly in the form of two polymorphs, calcite and aragonite, 55	

which are commonly found co-existing in the same specimens and appear to be precipitated in 56	

the same environments (Morse et al., 2007; Taylor et al., 2008). Trace elements are 57	

incorporated into the crystal lattice from both the ambient seawater and ingested food 58	

particles (Cubadda et al., 2001). Biological carbonates determine the largest component of the 59	

hydrosphere’s carbon reservoir, and the biogenic production of CaCO3 has a strong 60	

interdependence on the ocean composition, biogeochemistry and the carbon cycle (Cohen and 61	

McConnaughey, 2003). In the last few decades, increasing attention has been paid to the 62	

relationship between the elemental compositions of shells and external environmental factors. 63	

It has been repeatedly observed that the crystal layers are precipitated successively at regular 64	

periodicities, recording the conditions in which the calcification occurred (Marchitto et al., 65	

2000; Rodland et al., 2006). The elemental composition of the crystal lattice can provide 66	

records of seawater chemistry and has great potential for use in the interpretation of patterns 67	
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of ocean history (Freitas et al., 2006; Gillikin et al., 2006; Khim et al., 2003; Ponnurangam et 68	

al., 2016; Vander Putten et al., 2000). However, as recent studies have indicated (Dove, 69	

2010), the influence of environmental parameters on shell precipitation could be very 70	

complex. The mineralogy and chemistry of shells are likely to be not only linked to 71	

environmental conditions but are also simultaneously controlled by the organism itself. Even 72	

a single population or closely related species within the same habitat may exhibit different 73	

accumulation strategies (Rainbow et al. 2000).  74	

Calcite and aragonite differ in structure, symmetry and properties. The calcium ion has 75	

9-fold coordination in aragonite and 6-fold coordination in calcite, and its coordination creates 76	

hexagonal and cubic packing (Putnis, 1992). Due to the spatial structure, larger cations, such 77	

as Sr, fit better in aragonite, while smaller cations, such as Mg, are energetically favoured in 78	

calcite. In natural systems, calcite commonly incorporates Mg (Morse et al., 2007; Reeder, 79	

1983; Wang and Xu, 2001), and increasing Mg concentrations are known to increase the 80	

calcite solubility (Kuklinski and Taylor, 2009; Smith et al., 2006). At the temperatures and 81	

pressures of the Earth’s surface, low-Mg calcite is the most stable form of CaCO3 (de Boer, 82	

1977). Nevertheless, in many marine organisms, aragonite and high-Mg calcite are the 83	

dominant phases precipitated from seawater (Dickson, 2004). The solution chemistry (Cusack 84	

and Freer, 2008), temperature (Balthasar and Cusack, 2015), pressure (Allison et al., 2001), 85	

CaCO3 saturation state (Watson et al., 2012), pCO2 (Lee and Morse, 2010) and phylogenesis 86	

(Kuklinski and Taylor, 2009; Smith et al., 1998; Smith and Girvan, 2010) are known to 87	

influence shell mineralogy. The main driving force controlling the mineralogy of precipitated 88	

CaCO3 is the ratio of Mg to Ca ions in seawater (Cusack and Freer, 2008; Morse et al., 2007).. 89	

A Mg/Ca > 2 favours the precipitation of aragonite and high-Mg calcite. At high Mg/Ca 90	

ratios, such as those in modern seawater (Mg/Ca = 5.2), calcitic structures incorporate Mg, 91	

which is observed to inhibit calcite nucleation and growth, whereas aragonite nucleation is not 92	

affected by magnesium in solution (De ChoudensSanchez and Gonzalez, 2009; Morse et al., 93	

2007). Most low-Mg calcite-producing taxa are known to actively control the amount of 94	

magnesium incorporated. Since the Mg/Ca ratio of the calcifying fluid is dissimilar to that of 95	

ambient seawater, organisms might be unaffected by changes in the environmental Mg/Ca 96	

ratio (Bentov and Erez, 2005; De Nooijer et al., 2014). Several studies of organisms that 97	

secrete calcareous skeletons have shown that lower seawater temperatures are correlated with 98	

the secretion of calcite skeletons with low Mg contents, rather than more soluble high-Mg 99	

calcite or aragonite skeletons (Taylor and Reid, 1990). The mineralogy of many calcareous 100	

structures changes with latitude, likely as a result of the temperature gradient from the poles 101	
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to the equator (Kuklinski and Taylor, 2009; Loxton et al., 2014; Taylor et al., 2014). 102	

However, the secretion of calcite by marine organisms inhabiting low-temperature areas and 103	

aragonite in warmer waters is not an absolute rule, as many polar molluscs form fully 104	

aragonitic shells (Cairns and Macintyre, 1992). Thermodynamics predicts that aragonite is the 105	

stable phase at pressures higher than 5000 hPa (roughly 40 m depth), and calcite is the stable 106	

phase at lower pressures. However, aragonite is the major constituent of shells or pearls, 107	

indicating its metastable formation in shallow waters (Sunagawa et al., 2007). The 108	

incorporation of Sr was suggested to play a significant role in the biomineralogical 109	

precipitation of aragonite (Allison et al., 2001). Many studies have demonstrated a clear 110	

correlation between the concentration of Sr in the hard parts and precipitation of the aragonite 111	

layer (Iglikowska et al., 2016; Reeder, 1983). The ionic radius of Sr is larger than that of Ca; 112	

thus, Sr is more likely to form 9-fold coordination, which triggers metastable aragonite 113	

nucleation (Sunagawa et al., 2007). 114	

Although many studies have demonstrated that the biological control of shell 115	

composition is often more important than the environmental control (Carré et al., 2006; 116	

Freitas et al., 2005, 2006; Gillikin et al., 2005), there is evidence to the opposite trend (Klein 117	

et al., 1996; Pearce and Mann, 2006). In biologically controlled mineralization, the organism 118	

drives the process of nucleation and growth of the minerals independently from the 119	

environmental conditions. Basically, endogenous factors manifest through co-regulation of all 120	

the structures and functions of the organism, including its sex, growth rate, metabolism, and 121	

feeding strategy (Lowenstam and Weiner, 1989). Throughout the lifespan, the biogenic 122	

system experiences ontogenetic trends and seasonal variations in physiology, determining 123	

metabolic expenses on the basis of life's needs. Biological effects have been repeatedly used 124	

to explain any shifts of elemental concentrations in shells from a theoretical equilibrium 125	

(Davis et al., 2000; Watson et al., 1995). Ontogenetic fluctuations of the growth rate and 126	

metabolic activity affect the intensity of the metal uptake (Lee et al., 1998). Vander Putten et 127	

al. (2000) concluded that the seasonality of the accumulation of Mg, Sr and Pb in Mytilus 128	

edulis shells shows significant similarity across individuals, with a maximum during spring 129	

and early summer, and profiles cannot be explained by seasonal variations in the seawater 130	

composition. (Carré et al., 2006) developed a model of ion transport in bivalve shells that 131	

shows that Ca channels are less ion-selective when Ca2+ fluxes are higher. Other studies have 132	

found that trace metal uptake rate increases as mussel filtration rate increases (Janssen and 133	

Scholtz, 1979).  134	

It is still difficult to separate the degree to which the organism itself controls the 135	
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composition of the carbonate shell and how much this process is affected by the environment 136	

(Casella et al., 2017; Schöne and Krause, 2016; Weiner et al., 2001). Although calcareous 137	

parts serve as a powerful tool for the interpretation of the environmental conditions, detailed 138	

insight into the different factors controlling the composition of biological CaCO3 is 139	

fundamental for understanding the chemical profiles. Tracking potential sources of variation 140	

within calcifying organisms of many species with diverse mineralogy should provide valuable 141	

insight into the patterns driving the biomineralization process (Smith et al., 1998). 142	

The aim of this study is, by examining the trace element concentrations in calcitic, 143	

aragonitic and bimineralic shells. to assess the potential differences in free ion binding in two 144	

crystalline polymorphs in the low-salinity environmental system  using the example of the 145	

southern Baltic Sea. Brackish waters influence the activities of metal ions, enhancing their 146	

bioavailability (Fritioff et al., 2005) and contributing to lower Ca2+ concentrations, CaCO3 147	

saturation states, alkalinity and buffering capacity compared to those of more saline waters 148	

(Beldowski et al., 2010; Cai et al., 2010; Findlay et al., 2007). The seasonal changes (mainly 149	

the surface temperature variability, periodic lowering of salinity, irregular inflow of pollutants 150	

and intensity of biological processes) were found to affect both the metal concentration and 151	

the physiological processes of living organisms (Urey et al., 1951). For this study we selected 152	

dominant species of the calcifying benthic fauna in this region. This includes the bivalve 153	

molluscs: aragonitic Cerastoderma glaucum, Mya arenaria, and Limecola balthica and 154	

bimineralic Mytilus trossulus, as well as an arthopod, Amphibalanus improvisus, with a fully 155	

calcitic shell. The investigated species are deposit and filter feeders and have sessile or semi-156	

sessile lifestyles. Their lifespan is long enough to include various seasons and years covering 157	

therefore a range of environmental conditions during their existence. The potential influence 158	

of local environmental conditions on the observed trace element concentrations in the shells 159	

of the studied organisms is discussed. A comparison of concentration levels between size 160	

classes is also performed, to demonstrate any potential biological control of the shell 161	

chemistry (assuming that the larger specimens were older than the smaller specimens of the 162	

same species).   163	

2. Material and methods 164	

2.1. Study area 165	

The study area is located in the Gulf of Gdansk in the southern region of the Baltic Sea (Fig. 166	

1). The Gulf is partially sheltered from the northwest by the Hel Peninsula and from the west 167	

and south by the Polish coastline (Kruk-Dowgiałło and Szaniawska, 2008; Rainbow et al., 168	
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2004). This location makes the seawater the most turbulent in January and the calmest in 169	

June, with weak bottom currents and minimal tidal amplitudes. The hydrophysical parameters 170	

of the Gulf are mostly driven by the temperate climate and the following seasonal changes. 171	

Differences in air temperature and water mixing cause seasonal fluctuations of the surface 172	

water temperature, ranging from approximately 4 to 22°C (Uścinowicz, 2011). The Gulf of 173	

Gdansk is a low-salinity system under the influence of brackish water from the open southern 174	

Baltic Sea and fresh waters from rivers, mainly the Vistula River; the Vistula is the largest 175	

river in Poland and has an average annual inflow in the estuary of 1080 m³ s–1, which varies 176	

seasonally from 250 to 8000 m³ s–1 and has a maximum in spring (Cyberski et al., 2006). 177	

Thus, the average water salinity in the gulf is 7, varying from approximately 5.5 in summer to 178	

8.4 in winter (Bulnheim and Gosling, 1988; Szefer et al., 2002). 179	

The Gulf is known as an area highly exposed to human impact. This is due to intensive 180	

usage of its resources and to anthropogenic emissions originating from various coastal 181	

sources, river inflows and atmospheric deposition. The most significant input of industrial and 182	

municipal pollution into the Gulf of Gdansk is derived from the Vistula River, which 183	

transports pollutants from a catchment area of 194,000 km2 (Pruszak et al., 2005). Both the 184	

water discharge and sediment load into the Gulf are strongly seasonally dependent. The 185	

maximum river flow typically occurs in spring, with the minimum in autumn and winter, 186	

mainly due to periods of snow and ice melting (Cyberski et al., 2006; Pruszak et al., 2005; 187	

Szefer et al., 1996). Winter storms cause the re-deposition of sediments further into the Gulf 188	

of Gdansk (Damrat et al., 2013). Because of the natural conditions, mainly, the limited water 189	

exchange, contaminants brought by the river remain in the ecosystem for decades, 190	

accumulating in the sediments and in living organisms (Glasby et al. 2004; Szumiło-Pilarska 191	

et al. 2016).  192	

The benthic community of the Gulf of Gdansk is characterized by the dominance of 193	

calcifying filter feeders and deposit feeders (Kruk-Dowgiałło and Dubrawski, 1998). The low 194	

salinity (~7) and alkalinity, which, in most regions of the Baltic Sea, are lower than those in 195	

oceanic surface waters, cause reduced CO3
2– and Ca2+ concentrations in seawater, thus 196	

lowering the CaCO3 saturation state (Ω). Furthermore, due to the seasonality of the 197	

temperature and water chemistry, the amplitude of Ω in the Baltic Sea is high in comparison 198	

to that in the open ocean. It alternates between approximately 1 to 5 for calcite and 0.5 to 2.5 199	

for aragonite (Findlay et al., 2007). Seasonal changes also affect the feeding behaviour. The 200	

capacity for food processing is evolutionarily adapted to the concentrations of suspended 201	

matter, primarily phytoplankton, that prevail in the biotope during the productive seasons of 202	
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the year. During these periods, organisms exploit their growth potential (Pierscieniak et al., 203	

2010; Staniszewska et al., 2016). 204	

 205	

2.2. Species 206	

The barnacle Amphibalanus improvisus (Darwin, 1854) (Arthopoda, Maxillopoda), 207	

commonly named the bay barnacle, is a small sessile crustacean that typically exists in 208	

shallow coastal zones that are less than 10 m deep. It is widespread around the Atlantic and 209	

has been dispersed by shipping to many parts of the world, now having a worldwide 210	

distribution. It is a euryhaline and eurythermal species that is absent only from the Arctic and 211	

Antarctic seas (Kerckhof, 2002). A. improvisus is a filter feeder that inhabits hard substrates. 212	

In the Baltic Sea, the reproduction of barnacles starts in spring with temperatures over 10°C 213	

and ends in autumn. The species grows to approximately 10 mm in diameter with a maximum 214	

height of approximately 6 mm, and generally, it has longevity of one year (Żmudziński, 215	

1990). It has a conical shell composed of six fused calcite plates (Weidema, 2000).  216	

The clam Cerastoderma glaucum (Bruguière, 1789) (Mollusca, Bivalvia), commonly 217	

known as the lagoon cockle, is a saltwater clam found along the coasts of Europe and North 218	

Africa, including in the Mediterranean and Black Seas, the Caspian Lake, and the low-salinity 219	

Baltic Sea. It is a euryhaline species living in salinities of 4–84. C. glaucum can tolerate 220	

habitats with wide range of temperatures, from periodically freezing to above 30°C. It is a 221	

filter feeder that burrows 2–4 cm below the surface in soft sediments at shallow depths of 222	

secluded bays. It actively lives near the sediment surface, acting as a biodiffuser (Urban-223	

Malinga et al., 2013). The clam is surrounded by a ribbed aragonite shell, which is externally 224	

yellowish to greenish brown (Jelnes et al., 1971). In the brackish environment of the Gulf of 225	

Gdansk, C. glaucum spawns in May-July and typically lives up to 4 years, achieving a height 226	

of 27 mm (Żmudziński, 1990). 227	

 The soft-shell clam Mya arenaria (Linnaeus, 1758) (Mollusca, Bivalvia) is a marine 228	

invasive species introduced into European waters from the Atlantic coasts of North America 229	

(Behrends et al., 2005). It has a wide global distribution, mainly due to its adaptability to 230	

varying environments with salinities between 4 and 35 and temperatures between –2 and 231	

28°C (Gofas, 2004; Strasser et al., 1999). M. arenaria burrows into the sediment up to 20–30 232	

cm below the surface of the sea floor. M. arenaria is a filter feeder, filtering organic particles 233	

and microinvertabrates using long fused siphons, and a deposit feeder. In the Gulf of Gdansk, 234	

M. arenaria is a common inhabitant of shallow waters up to a depth of 30 m. It spawns once 235	
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or twice a year in spring or summer, at temperatures of 10 – 15°C. Individuals live 10 – 12 236	

years. They have aragonitic shells and grow up to 70 mm (Żmudziński, 1990).  237	

 The clam Limecola balthica (Linnaeus, 1758) (Mollusca, Bivalvia) lives in the 238	

northern parts of the Atlantic and Pacific oceans, in Subarctic and European waters from 239	

southern France to the White Sea and Pechora Sea, including the Baltic Sea (Strelkov et al., 240	

2007). It is a euryhaline clam capable of living in a wide range of water salinities from 3 to 40 241	

and at temperatures from –2 to more than 30°C (Sartori and Gofas, 2016). L. balthica is a 242	

filter feeder and deposit feeder that lives buried a few centimetres below the surface. It has a 243	

semi-sessile lifestyle, with the ability to undertake periodic migrations (Hiddink et al., 2002). 244	

In the Baltic Sea, L. balthica lives at depths of up to 40 m and grows to 24 mm. Adults 245	

reproduce in spring when the water temperature reaches 10°C and live 12 years (Żmudziński, 246	

1990). They have aragonitic shells varying in colour between individuals and locations, 247	

mainly exhibiting white, pink, yellow and orange (Sartori and Gofas, 2016).    248	

 The mussel Mytilus trossulus (Gould, 1850) (Mollusca, Bivalvia) is one of three 249	

closely related taxa in the Mytilus edulis complex of blue mussels, which, collectively, are 250	

widely distributed in the temperate and cold-water coasts of the Northern Hemisphere and are 251	

often dominant organisms on hard substrates of shallow nearshore habitats (Rainbow et al., 252	

1999; Wenne et al., 2016). Generally, M. trossulus has a life span of approximately 12 years 253	

and grows to 100 mm, yet in the estuarine environment of the Gulf of Gdansk, it reaches a 254	

maximum length of approximately 50 mm (Gofas, 2004; Żmudziński, 1990). Mussels are 255	

sessile filter feeders, mainly depending on phytoplankton. They reproduce from late spring to 256	

early autumn, depending on the temperature and food abundance (Larsson et al., 2017; 257	

Lauringson et al., 2014; Rainbow et al., 2004). The shell of M. trossulus is bimineralic and 258	

consists of two calcium carbonate layers: an outer calcite and inner aragonite layer in variable 259	

proportions between individuals (Dalbeck, 2008; Piwoni-Piórewicz et al., 2017). 260	

 261	

2.3. Sample collection and preparation 262	

Samples of shells were gathered by a Van Veen grab sampler from four stations, GN, MA, 263	

M2 and MW, located in the Gulf of Gdansk (Table 1, Fig. 1). No single location that would 264	

be a source of several species presenting different forms of CaCO3 was found. Three species 265	

were found at MA, M2 and MW (one at each station), while two species were collected at 266	

station GN (see Table 1). To ensure that the samples were not contaminated or modified by 267	

solutions of preservatives, the collected material was transported alive in tanks filled with 268	

seawater to the laboratory, where sample preparation took place. 269	
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 By measuring the shell heights of clams and shell diameters of barnacles using a 270	

calliper with an accuracy of ±1 mm, the shells were classified into four size classes. The 271	

division into size classes was performed on the basis of the size reached by each species in the 272	

southern Baltic Sea environment (Table 2). Forty shells (ten in each class) were selected for 273	

A. improvisus, C. glaucum, M. arenaria and L. balthica. For M. trossulus, 20 shells were 274	

selected, with five in each class, while the results for the rest were obtained from Piwoni-275	

Piorewicz et al. (2017). After the removal of soft tissues, each shell was viewed under a 276	

stereoscopic microscope to examine the epibiotic flora and fauna, which could contaminate 277	

the sample and bias the chemical analysis. If any organisms were present on the shell, they 278	

were carefully removed. To remove the biofilm, the periostracum was scraped with a scalpel, 279	

and pre-cleaned shells were placed in an ultrasonic bath (InterSonic IS-7S) in ultra-pure water 280	

for 30 minutes and then dried at 70°C for 24 hours. The shells were then crushed and ground 281	

into a fine powder with an agate mortar and pestle. Aliquots (2.8 − 849 mg, mean = 132 mg) 282	

of the powdered samples were weighed using a 5-digit analytical balance, placed into a 15 ml 283	

plastic tube (Sarstedt®) and dissolved in a mixture of 1.5 ml concentrated nitric acid (HNO3, 284	

Sigma Aldrich®, Trace SELECT for trace analysis), 1.5 ml ultra-pure water and 0.3 ml 30% 285	

hydrogen peroxide (H2O2, Merck® Suprapure grade). After 24 hours at 70°C, the liquid 286	

samples were diluted to c. 15 ml by weight with ultra-pure water. 287	

 288	

2.4. Elemental analysis 289	

Concentrations of chemical elements in the digested samples were determined at the Natural 290	

History Museum, London, using a Thermo iCap 6500 Duo inductively coupled plasma optical 291	

emission spectrometer (ICP-OES) for Ca, Mg, Na and Sr and an Agilent 7700x inductively 292	

coupled plasma mass spectrometer (ICP-MS) for Ba, Cd, Cu, Pb, U, V, Mn and Y. 293	

Calibration of the ICP-OES analysis was performed using solutions that were matrix-matched 294	

to the high calcium concentrations in the samples. Multiple wavelengths for each element 295	

were recorded, and line selection was performed by accounting for the suitability of the 296	

wavelength to the concentrations in the samples. The accuracy and reproducibility of the 297	

analyses were checked using two calcium-rich certified reference materials (CRMs), JLs-1 298	

Limestone and JDo-1 Dolomite (both from the Geological Survey of Japan), which were 299	

dissolved by the total digestion method using hydrofluoric acid. The reference materials were 300	

diluted to match the concentrations of Ca in the sample solutions (Imai et al., 1996). 301	

The limits of quantification (LOQ) of the ICP-MS analysis were generally determined 302	

as the concentration corresponding to ten times the standard deviation of the signal obtained 303	
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by analysing 5% HNO3 solution (6–7 times) in each individual run. ICP-MS was run in 304	

helium (He) mode (5 ml min–1 He, 99.9995% purity) for most trace elements to minimize the 305	

molecular interference from plasma and solution components and Ca from the samples. The 306	

accuracy and reproducibility was checked by periodic analyses of JLs-1 and JDo-1 (Imai et 307	

al., 1996). 308	

 309	

2.5. Statistical analyses  310	

To evaluate the effect of the shell size (ontogenesis stage) on the concentrations of trace 311	

elements in calcareous parts of A. improvisus, C. glaucum, M. arenaria L. balthica and M. 312	

trossulus, the concentrations of Ca, Na, Sr, Mg, Ba, Mn, Cu, Pb, V, Y, U and Cd were 313	

examined in the four size classes separately for each species. The data were not normally 314	

distributed (Shapiro-Wilk test); therefore, significant differences between the mean 315	

concentrations of the selected elements in the size classes were identified by one-way 316	

Kruskal-Wallis nonparametric ANOVA (p-value = 0.05) and post-hoc Dunn's tests for 317	

multiple independent groups. Statistical computing and graphical visualizations were 318	

performed in RStudio. 319	

 320	

3. Results 321	

The species exhibited similar accumulation orders since they had the highest concentration of 322	

Na, Sr and Mg and the lowest concentrations of U and Cd (Table 3, Fig. 2). However, the 323	

concentrations of metals were different between the calcitic shells of A. improvisus, the 324	

aragonitic shells of C. glaucum, M. arenaria, L. balthica and the bimineralic shells of M. 325	

trossulus, showing high variability (Fig. 3). Manganese was the most variable and increased 326	

from 1.4 ± 1.0 mg kg–1 in aragonitic M. arenaria to 620 ± 155 mg kg–1 in calcitic A. 327	

improvisus. Trace elements (V, Cu, Y, Cd, Ba, Pb, U) were generally present at higher 328	

concentrations in calcitic shells than in aragonitic ones. Shells of M. arenaria had the lowest 329	

concentrations of impurities. The smallest variability between species was found for Sr, Na 330	

and Ca (Fig. 3). 331	

The results of the Kruskal-Wallis nonparametric ANOVA test, which was used to 332	

compare the shell chemistry between the four size classes in each population, revealed the 333	

lack of ontogenetic changes within aragonitic M. arenaria. The smallest variability was found 334	

in aragonitic L. balthica, for which only the concentration of Na (p = 0.014) decreased with 335	

shell growth. The third of the aragonite species, C. glaucum, showed high variability of the 336	

four elements. Throughout the lifespan, shells were built with increasing concentrations of Sr 337	
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(p = 0.002), which was contrary to the decreasing concentration of Na (p = 0.015), Mn (p = 338	

0.014) and Cd (p = 0.009). Similarly, the calcitic shells of A. improvisus also showed 339	

variability of four elements between size classes, namely, Mg (p = 0.007), V (p = 0.011), Cu 340	

(p = 0.027) and Pb (p = 0.004). However, in this case, the sequences of the ontogenetic 341	

changes were not straightforward but, rather, had a tendency to fluctuate between the 342	

youngest and the oldest individuals. The highest variability was found within the bimineralic 343	

shells of M. trossulus. The size classes differed in terms of five elements. The incorporation 344	

of V (p < 0.001), Cu (p < 0.001), Y (p = 0.013), Cd (p = 0.002) and U (p < 0.001) into the 345	

crystal lattice decreased in larger mussels (Fig. 3, Fig. 4).  346	

Detailed analyses of the significant differences in the studied elements between the 347	

size classes based on post-hoc Dunn’s tests for multiple independent groups indicated that the 348	

variations were not linear (Fig. 5). In L. balthica aragonitic shells, sodium concentration 349	

decreased with ageing, showing differences between the size classes I and III and I and IV. In 350	

the shells of C. glaucum, Sr concentration increased gradually, reaching a peak in the size 351	

class IV, while statistically significant differences were observed between the size classes I 352	

and IV and the III and IV. An inverse pattern was observed for sodium, yet its concentration 353	

differed only between the youngest and oldest individuals. The aragonitic shells were 354	

characterized by a common trend of the Mn and Cd concentrations, which decreased from I 355	

size class and later reached a plateau. In the calcitic shells of A. improvisus, the concentrations 356	

of Mg, V, Cu and Pb decreased in larger individuals. The levels of magnesium in shells 357	

statically differed between the size classes III and IV; likewise, shells from the size class III  358	

had the highest concentrations. Vanadium and lead occurred at the highest concentrations in 359	

the shells of the youngest individuals, and later, they oscillated around a similar average. Co 360	

decreased in growing shells of barnacles, reaching the minimum in the size class III. There 361	

were no statistically significant differences between the classes III and IV, and the oldest half 362	

of the group maintained the downward trend. However, it is worth noting that Cu 363	

concentrations in many of the oldest shells are several times higher. The bimineralic shells of 364	

M. trossulus were characterized by the highest variability of trace element concentrations 365	

between size classes. The trend of decreasing concentrations was clearly marked for V, Co, 366	

Cd and U. The concentration of Y decreased in larger shells, but the oldest shells showed an 367	

upward trend; therefore, significant differences were found between the size classes I and III 368	

(Fig. 5). 369	

 370	

4. Discussion 371	
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Magnesium and strontium are some of the most commonly studied elements in the skeletons 372	

of marine calcifiers due to their important role in the biological precipitation of CaCO3 373	

(Allison et al., 2001; De Choudens–Sanchez and Gonzalez, 2009; Morse et al., 2007). We 374	

found statistically significant differences in the concentrations of Mg and Sr between the 375	

calcitic, aragonitic and bimineralic species. This confirms that the crystal structure of the shell 376	

plays a key role in the incorporation of major elements. In the calcitic A. improvisus, Mg was 377	

the dominant impurity, while aragonitic C. glaucum, M. arenaria and L. balthica had 378	

concentrations of Sr over 15 times higher than those of Mg. The shell of M. trossulus contains 379	

layers of calcite and aragonite, thus favouring both Mg and Sr. Not surprisingly, in this study, 380	

mussels were characterized by similar concentrations of Mg and Sr, reaching 0.106 ± 0.017 381	

mg kg–1 and 0.117 ± 0.010 mg kg–1, respectively (Table 3, Fig. 3). These observations are in 382	

agreement with results obtained by other authors for different calcareous species (Iglikowska 383	

et al., 2016; Morse et al., 1997; Reeder, 1983; Wang and Xu, 2001). Such results confirm the 384	

importance of the Mg and Sr ionic radius in terms of the aragonite and calcite lattice 385	

properties (England, 2005). The studied calcitic A. improvisus, without a doubt, has the 386	

highest Mg concentration in its shells (0.394 ± 0.032 mg kg–1); however, the Sr concentration 387	

was also higher in barnacles (0.225 ± 0.019 mg kg–1) compared to that in aragonitic clams 388	

(0.170 − 0.216 mg kg–1) (Table 3, Fig. 3). Kinetic and biological effects (Urey et al., 1951) 389	

influence the partitioning of Sr between the shell and seawater, and Sr in shells is known to 390	

significantly exceed its concentration expected at the thermodynamic equilibrium (Schöne et 391	

al., 2010). An important consideration for Sr concentrations in calcite is that Mg incorporation 392	

into the shells may increase the Sr affinity through changes in the calcite crystal morphology 393	

(Carpenter and Arbor, 1992). Greater inclusion of minor ions into the shell structure may 394	

result in crystal defects, contributing to a higher incorporation rate of less compatible ions into 395	

the crystal lattice (Dalbeck, 2008; Davis et al., 2000). Furthermore, it was found that 396	

barnacles differ from other calcitic species, having an uncommonly high Sr level (Carpenter 397	

and Arbor, 1992; Ullmann et al., 2018), and the highest concentration in A. improvisus in the 398	

Gulf of Gdansk could act as species-specific adaptation (Fig. 3). 399	

Sodium belongs to the group of proxies used in the robust reconstruction of salinity, 400	

and this relationship seems to be related mainly to the increase of Na activity in seawater with 401	

increasing salinity (Findlater et al., 2014; Wit et al., 2013). Although we observe that for 402	

invertebrates collected from stations with similar salinities between 6.9 and 7.3, the aragonitic 403	

species incorporated more Na than did the calcitic and bimineralic species (Figs. 3 and 4). The 404	

concentration of Na ranged, on average, from 0.2 wt% in M. trossulus to 0.32 wt% in C. 405	
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glaucum (Table 3). This finding could mean that the polymorph orientation affects Na 406	

concentration in shells. Following the orientation of the crystal lattice, Na, as a cation larger 407	

than Ca, performs better in the aragonite structure (Davis et al., 2000). Dalbeck (2008) 408	

compared the minor element variations between the polymorphs of Mytilus edulis bimineralic 409	

shells, and faound that Na occurred in higher concentrations in the aragonitic layer. Although 410	

the Na/Ca ratio is frequently discussed as a climate proxy, the degree to which Na 411	

concentration in biogenic carbonate represents the environmental salinity varies from one 412	

species to another (Vander Putten et al., 2000; Schöne and Krause Jr, 2016). This study shows 413	

lack of pattern in the distribution of Na between individuals from one population and between 414	

species. 415	

The concentrations of manganese and barium in the calcitic shells of A. improvisus 416	

were several orders of magnitude larger than those in other species, reaching 625 ± 160 mg 417	

kg–1 and 73.2 ± 19.3 mg kg–1, respectively (Table 3). The bimineralic shells of the mussel M. 418	

trossulus collected from the same location as A. improvisus (GN) contained 56.6 ± 20.0 mg 419	

kg–1 of Mn and 17.0 ± 6.7 mg kg–1 of Ba, while the aragonitic shells of clams incorporated 420	

from 1.419 ± 1.01 mg kg–1 to 11.933 ± 10.47 mg kg–1 of Mn and from 2.63 ± 1.58 mg kg–1 to 421	

15.12 ± 10.15 mg kg–1 of Ba (Table 4, Fig. 3). This trend does not seem to be strongly linked 422	

to the crystal lattice orientation because smaller Mn cations are energetically favoured in 423	

calcitic species, while larger cations, such as Ba, better fit into aragonite (Dalbeck, 2008; 424	

Davis et al., 2000; Wang and Xu, 2001). It was expected that aragonite shells would 425	

incorporate Ba more intensively than would calcitic shells (Findlater et al., 2014; Gillikin et 426	

al., 2006), yet this trend was not observed (Figs. 3 and 4). The organisms derive metal ions 427	

from both the surrounding water and food (Freitas et al. 2006; Gillikin et al. 2005; Poulain et 428	

al. 2015). It is highly probable that intra-species variabilities reflect the seasonal variability of 429	

Mn and Ba concentrations in seawater, while differences between species partly depend on 430	

feeding strategies. Findlater et al. (2014), based on shells of fossil freshwater bivalves and 431	

gastropods from the same location, concluded that a clear biochemical vital effect was evident 432	

for Mn and Ba. Dissolved Mn is intensively delivered to the oceans by riverine input, and in 433	

the Gulf of Gdansk, the geographical range of the Vistula River inflow plays a very important 434	

role in the Mn distribution (Uścinowicz, 2011). However, much lower concentrations of Mn 435	

were found in the shells of molluscs than in barnacles from the same location (Figs. 3 and 4). 436	

A similar relationship was found in the soft tissues of M. trossulus and A. improvisus 437	

collected from different locations in the Gulf of Gdansk in May 1998 (Rainbow et al., 2000). 438	

The range of Mn in the soft tissues of M. trossulus varied from 19.0 to 41.0, while that in A. 439	
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improvisus ranged from 187 to 307 mg kg–1. Therefore, A. improvisus is a very effective 440	

accumulator of Mn. The disproportionality of Mn and Ba concentrations between molluscs 441	

and barnacles could reflect the ability of molluscs to limit vital processes and to reduce the 442	

calcification rate during stressful conditions (Berge et al., 2006; Hiebenthal et al., 2012). A 443	

limited food base, low temperatures, saturation states during colder months and even the high 444	

river inflow in early spring (Cyberski et al., 2006; Pruszak et al., 2005; Szefer et al., 1996) can 445	

reduce the precipitation rates of C. glaucum, M. arenaria, L. balthica and M. trossulus. In 446	

contrast, the calcified shells of barnacles grow more or less continuously (Bourget and Crisp, 447	

1975) and represent yearly calcification. The Mn and Ba incorporation from seawater into 448	

calcite and aragonite has been shown to correlate with changes in primary production and 449	

phytoplankton blooms (Freitas et al., 2006; Lazareth et al., 2003; Vander Putten et al., 2000). 450	

As many clams and barnacles are filter-feeding organisms, Mn- or Ba-rich particles are 451	

ingested with food and from the water column. Schoemann et al. (1998) recorded a seasonal 452	

increase of dissolved Mn in the water column after peaks in phytoplankton blooms. This 453	

partly explains why M. arenaria had the smallest concentrations of Mn and Ba. This clam 454	

represents a deposit-feeding mode and thus may have limited access to suspended particles. 455	

Uptake and accumulation in filter-feeders correlates with metal concentrations in seawater, 456	

whereas accumulation in deposit-feeders most likely reflects the metal concentrations in the 457	

sediments (Newman and McIntosh, 1982). Luoma and Jenne (1976) concluded that the degree 458	

of metal accumulation by deposit-feeders was directly related to the characteristic rate of 459	

metal desorption from a particular type of sediment.  460	

Shells of A. improvisus, characterized by the highest concentrations of Mg, Sr, Mn and 461	

Ba, were simultaneously the richest in most other trace metals, which were likewise more 462	

concentrated in bimineralic M. trossulus than in aragonitic clams (Table 3, Fig. 2). It was 463	

mentioned previously that impurities arise in deformed crystal lattices (Dalbeck, 2008; Davis 464	

et al., 2000), and these lattices could be changed through the intensive incorporation of Ca 465	

substitutions. However, it is also important to mention that the ionic radii of smaller cations, 466	

such as V, Cd, Y, Pb, U and Cu, are more energetically favoured in calcite than in aragonite 467	

(Morse et al., 1997; Reeder, 1983; Wang and Xu, 2001).  468	

Trace metal concentrations in shells are usually linked to local environmental 469	

conditions. If heavy metals in the shells of calcifying invertebrates reflect the environmental 470	

levels of bioavailable ions, the highest concentrations of most trace metals in the shells of A. 471	

improvisus and M. trossulus from GN station (Table 4, Fig. 3) are probably related to local 472	

contamination. Rainbow et al. (2004) compared the differences between the bioavailabilities 473	
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of seven metals (Cu, Zn, Fe, Pb, Ni, Cd and Mn) to A. improvisus and M. trossulus across five 474	

localities in the Gulf of Gdansk, including GN station, which was often the richest metal 475	

source for marine organisms. Among the stations selected in this study, GN is closer than 476	

MA, MW and M2 to the mouth of the Vistula River, which is a major source of metal 477	

contaminants in the marine system (Fig. 1).   478	

 In this study, individuals were collected over a wide range of sizes from each station 479	

(Table 2), representing different ages and various periods of time, living under the influence 480	

of seasonal changes. The southern Baltic Sea is driven by cyclical environmental dynamics, 481	

which evoke physiological stress, reduce the food base and determine the biogeochemical 482	

cycle (Elder and Collins, 1991). It is certain that the biological processes of an animal 483	

precipitating carbonate complicate the calcification course (Vander Putten et al., 2000; 484	

Zacherl et al., 2003). However, the physiology of an organism is likely dependent on the 485	

environmental conditions it experiences (Gillikin et al., 2005). The recorded concentrations of 486	

metals in all populations exhibited marked variability among individuals within a single 487	

location (Table 3, Fig. 3), an attribute which was previously noticed by several researchers 488	

(Gillikin et al., 2005; Vander Putten et al., 2000). The wide range of inter-species variability 489	

suggests that the uptake of metals, and the subsequent bioavailability, are highly dependent on 490	

biological factors such as the growth rate, feeding strategy, genotype and phylogeny. Within 491	

species, organisms from juveniles to adults experience morphological and functional changes 492	

related to sex, metabolic rate or reproductive stage, which affect the biomineralization process 493	

(Carré et al., 2006; Freitas et al., 2006; Gillikin et al., 2005; Schöne et al., 2010, 2011; Warter 494	

et al., 2018). In shells of the studied A. improvisus, C. glaucum, M. arenaria, L. balthica and 495	

M. trossulus, differences in elemental concentrations over the lifespan did not produce a 496	

consistent pattern. From the chemical profiles, it is evident that the size-dependent 497	

distributions of elements in the shells were only marked in a few cases (Figs. 5 and 6). The 498	

studied A. improvisus and M. trossulus showed the greatest chemical variability between size 499	

classes (Fig. 4). However, in this case, the varied elements were not uniform for A. improvisus 500	

and M. trossulus, even though the organisms came from one location (Table 1). No size-501	

related trend was observed for Y, U, and Cd in barnacles or for Pb in molluscs (Fig. 3). It was 502	

previously found that different species in the same habitat might show different patterns of 503	

metal accumulation, which are caused by specific routes of uptake or differences in the 504	

physiological pathway of metals (Rainbow, 2002, 1995). Rainbow et al. (1999) tested A. 505	

improvisus and M. trossulus from the Gulf of Gdansk as environmental biomonitors by 506	

measuring the concentrations of Co, Zn, Fe, Cd, Pb, Mn and Ni in soft tissues. They revealed 507	
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that the mussels and barnacles gathered at one location did not show the same variation in 508	

metal bioavailabilities. 509	

 In this study, generally, when statistical differences between size classes were 510	

recorded, the concentrations of metals decreased with the size of the shell. The reverse trend 511	

was found only for Sr in the shells of C. glaucum, in which the concentration of Sr increased 512	

with size (Fig. 4). It is possible that the younger specimens had a greater calcium carbonate 513	

precipitation rate and uptake of trace elements due to a higher metabolism in the earlier stages 514	

of the animal life (Dalbeck, 2008). Rosenberg and Hughes (1991) suggested that areas of 515	

higher shell curvature, such as the umbo, require greater metabolic expenditure, resulting in 516	

an increase of metals uptake. This supports the idea of a higher metabolic rate and metal 517	

concentrations in younger specimens (Szefer et al., 2002). This study also indicates that the 518	

smallest individuals seem to be the most efficient accumulators of trace elements. This is 519	

mostly expressed in the cases of a few trace elements, in which the concentration decreased 520	

across the four size classes in the shells of A. improvisus, M. trossulus and C. glaucum (Fig. 521	

4). There are several studies confirming a negative relationship between metal concentrations 522	

and shell size (Martincic et al., 1992; Piwoni-Piórewicz et al., 2017; Ritz et al., 1982). Catsiki 523	

and Gialamas (1994) suggested that apart from metabolic processes, an active detoxification 524	

mechanism is responsible for this trend, and its efficiency is higher in older and larger 525	

individuals. 526	

 Nevertheless, many of the elements studied herein showed a lack of statistically 527	

significant relationships between the shell sizes. Few trace metals in the shells of A. 528	

improvisus (Y, U, Cd), C. glaucum (V, Cu, Y, Pb, U) and M. trussulus (Pb) and all trace 529	

metals in the shells of L. balthica and M. arenaria (V, Cu, Y, Pb, U, Cd) showed no 530	

significant variability related with the growth of organisms (Fig. 3). This is not unusual in 531	

biomineralization studies. Saavedra et al. (2004) observed no differences between Cd, Pb, Cr, 532	

Ni, As, Cu and Zn concentrations for different shell lengths of the raft Mytilus 533	

galloprovincialis separated into four size classes. Protasowicki, Dural, & Jaremek (2008) 534	

similarly found that the concentrations of Hg, Pb, Cd, Cu, Zn, Cr, Ni, Fe, Mn, V, Li and Al in 535	

the shells of the mussel Mytilus edulis from the Polish coast of the Baltic Sea did not vary 536	

between shell sizes. This inconsistent pattern proves that biological effects modify the way in 537	

which environmental data are recorded in the biogenic hard parts.  538	

 539	

5. Summary 540	
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The shells of the calcitic A. improvisus, the aragonitic C. glaucum, L. balthica, M. arenaria 541	

and the bimineralic M. trossulus from the Gulf of Gdansk are accumulators of a wide 542	

spectrum of metals from the surrounding environment. The selected taxa differed in terms of 543	

the chemical compositions of shells, both between taxa and within a single population. 544	

Elemental variability is strongly associated with the properties of the crystal lattice, which are 545	

different between calcite and aragonite. Remarkably high variability of elemental 546	

concentrations between species, especially for manganese, supports the importance of 547	

species-specific biological control of the biomineralization process. The high variability of 548	

elemental values within a single population indicates that both physiological and 549	

environmental factors have an influence on the incorporation of these trace elements into the 550	

shell. Given that the species were obtained from various sites, an impact from local 551	

environmental factors cannot be excluded.  552	

This study has shown that interpreting the chemical profiles of calcium carbonate 553	

shells to determine the marine environment conditions is recommended to investigate how 554	

metal concentrations vary among large numbers of species from contrasting habitats. 555	

Nevertheless, we recommend using shells of similar sizes to reduce the ontogenetic 556	

variability. 557	
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Tables and Figures 918	

Table 1 Details of the research stations utilized for the collection of organisms. The 919	

environmental parameters T (temperature) and salinity were measured near the bottom during 920	

sample collection 921	

Station Latitude 
N 

Longitude 
E Collected species Depth 

(m) 
T 
(°C) Salinity Date 

GN 54°32.0' 18°48.1' Amphibalanus improvisus 36 3.1 7.3 May 2013  
GN 54°32.0' 18°48.1' Mytilus trossulus 36 3.1 7.3 May 2013  
M2 54°38.9' 18°33.0' Cerastoderma glaucum 10 16.9 6.9 June 2014 
MA 54°37.2' 18°32.8' Mya arenaria 10 19.8 6.9 June 2014 
MW 54°37.4'  18°37.5' Limecola balthica 31 4.7 7.0 June 2014 

 922	

Table 2 The range of shell sizes for each studied species within a given size class 923	

Species  Mineral type 
Size classes (mm) Maximum size in the  

Gulf of Gdansk (mm)* 1 2 3 4 
Amphibalanus improvisus Calcite 3–4 5–6 7–8 9–10 10 
Mytilus trossulus Bimineralic 6–5 16–25 26–35 36–44 50 
Cerastoderma glaucum Aragonite 4–8 9–12 12–16 16–20 27 
Mya arenaria Aragonite 10–20 20–30 30–40 40–49 70 
Limecola balhtica Aragonite 4–7 8–11 12–15 15–18 24 

*Based on the literature data (Żmudziński, 1990) 924	

 925	

Table 3 The concentrations of the studied elements in shells of the collected organisms 926	

Amphibalanus improvisus 
Elements Mineral type Unit N Mean ±1 SD Min Max 
Ca 

C
al

ci
te

 

w
t %

 

37 31.6 2.60 27.6 39.0 
Mg 37 0.394 0.032 0.337 0.472 
Na 37 0.285 0.047 0.222 0.508 
Sr 37 0.225 0.019 0.198 0.283 
V 

m
g 

kg
– 1

 

36 0.466 0.156 0.155 0.78 
Mn 37 625 160 414 1161 
Cu 37 3.90 2.20 1.20 8.30 
Y 37 0.21 0.12 0.070 0.78 
Cd 37 0.062 0.020 0.029 0.125 
Ba 37 73.0 20.1 59.0 145 
Pb 37 1.34 0.79 0.456 3.86 
U 37 0.108 0.043 0.035 0.220 
Cerastoderma glaucum 
Elements Mineral type Unit N Mean ±1 SD Min Max 
Ca A r a g o n i t e w t  %

 

40 34.8 1.60 30.4 38.1 
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Mg 40 0.008 0.003 0.005 0.023 
Na 40 0.322 0.021 0.277 0.361 
Sr 40 0.170 0.014 0.143 0.199 
V 

m
g 

kg
– 1

 

37 0.069 0.061 0.003 0.239 
Mn 40 11.9 10.5 0.614 48.8 
Cu 40 4.08 6.29 0.188 30.6 
Y 40 0.070 0.074 0.006 0.401 
Cd 37 0.011 0.009 0.001 0.043 
Ba 40 15.0 10.0 1.22 35.4 
Pb 34 0.14 0.10 0.006 0.298 
U 40 0.096 0.084 0.003 0.339 
Limecola balthica 
Elements Mineral type Unit N Mean ±1 SD Min Max 
Ca 

A
ra

go
ni

te
 

w
t %

 

40 34.5 1.70 29.0 37.5 
Mg 40 0.008 0.003 0.003 0.018 
Na 40 0.31 0.03 0.25 0.367 
Sr 40 0.177 0.021 0.135 0.244 
V 

m
g 

kg
– 1

 

35 0.035 0.031 0.002 0.102 
Mn 40 7.90 7.10 0.264 28.5 
Cu 40 3.00 3.40 0.047 11.5 
Y 40 0.08 0.11 0.002 0.421 
Cd 37 0.007 0.008 0.0004 0.031 
Ba 40 13.0 10.0 0.638 27.6 
Pb 39 0.14 0.16 0.007 0.585 
U 40 0.034 0.024 0.004 0.088 
Mya arenaria 
Elements Mineral type Unit N Mean ±1 SD Min Max 
Ca 

A
ra

go
ni

te
 

w
t %

 

40 36.3 1.8 30.5 39.1 
Mg 40 0.015 0.002 0.011 0.021 
Na 40 0.308 0.021 0.26 0.345 
Sr 40 0.216 0.028 0.168 0.295 
V 

m
g 

kg
– 1

 

40 0.016 0.014 0.001 0.062 
Mn 40 1.40 1.00 0.276 5.32 
Cu 40 0.031 0.024 0.006 0.114 
Y 40 0.020 0.018 0.003 0.089 
Cd 37 0.002 0.003 0.0002 0.016 
Ba 40 2.60 1.60 0.574 6.26 
Pb 40 0.015 0.014 0.002 0.077 
U 40 0.006 0.005 0.001 0.022 
Mytilus trossulus 
Elements Mineral type Unit N Mean ±1 SD Min Max 
Ca 

B
im

in
er

al
ic

 w
t %

 

40 34.4 2.8 25.2 39.7 
Mg 40 0.106 0.017 0.061 0.14 
Na 21 0.201 0.031 0.147 0.291 
Sr 41 0.117 0.01 0.101 0.143 
V 

m
g 

kg
– 1

 

40 0.78 0.52 0.206 2.30 
Mn 35 54.0 15.0 31.8 92.6 
Cu 40 14.0 10.0 3.36 58.3 
Y 40 0.70 1.20 0.040 4.86 
Cd 40 0.091 0.11 0.022 0.689 
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Ba 38 17.0 6.70 8.97 38.7 
Pb 32 1.00 1.40 0.143 6.26 
U 40 0.053 0.033 0.018 0.129 
 927	

 928	

 929	

 930	

Fig. 1 The study area, with sampling stations indicated by black dots (stations details see 931	

Table 1) 932	

 933	
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 934	

Fig. 2 The distribution of logarithmically transformed mean metal concentrations in shells of 935	

Amphibalanus improvisus, Cerastoderma glaucum, Limecola balthica, Mya arenaria and 936	

Mytilus trossulus 937	

 938	
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 939	

Fig. 3 Metal concentrations in analysed shells of Amphibalanus improvisus, Cerastoderma 940	

glaucum, Limecola balthica, Mya arenaria and Mytilus trossulus. The figure shows the raw 941	

data as grey dots, with boxplots representing a ±1 standard deviation around the means and 942	

whiskers indicating the minimum and maximum concentrations. The grey areas show 943	

elements with statistically significant differences between size classes 944	
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 945	

 946	

Fig. 4 Concentrations of elements with statistically significant differences between the four 947	

size classes (for size class details see Table 2) in the shells of Amphibalanus improvisus, 948	

Cerastoderma glaucum, Limecola balthica and Mytilus trossulus. The figure shows the raw 949	

data as black dots, with the light grey areas representing the standard deviations around the 950	

means (middle line) 951	

 952	
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 953	

Fig. 5 Pairwise comparisons of metal concentrations between size classes (for size class 954	

details see Table 2) in the shells of Amphibalanus improvisus, Cerastoderma glaucum, 955	

Limecola balthica and Mytilus trossulus. The broken line separates statistically significant 956	

dependence (black points) from statistically non-significant dependence (empty points) 957	
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